Regression in R with grouped variables -
the dependent variable value of data frame df predicted using independent variables mean, x, y in following way:
df <- df %>% group_by(country, sex) %>% do({ mod = lm(value ~ mean + x + y, data = .) <- predict(mod, .) data.frame(., a) }) data grouped country , sex. so, fitting formula can expressed as:
value(country, sex) = a0(country, sex) + a1(country, sex) mean + a2(country, sex) x + a3(country, sex) y however, want use formula:
value(country, sex) = a0(country, sex) + a1(country, sex) mean + a2(country) x + a3(country) y where a2 , a3 independent of sex. how can it?
i don't think can when grouping country , sex. group country , add interactions sex:
df <- df %>% group_by(country) %>% do({ mod = lm(value ~ sex + mean*sex + x + y, data = .) <- predict(mod, .) data.frame(., a) }) or estimate model in 1 go adding interactions sex , country:
mod <- lm(value ~ sex*country*mean + country*x + country*y <- predict(mod)
Comments
Post a Comment